

Math Virtual Learning

Geometry/Honors Geometry

Monday, May 11th

Grade/Course Lesson: May 11th, 2020

Objective/Learning Target:
Students will find the area of a sector.

Warm-Up: Find the area of the circles

Warm-Up Answers

What if you wanted to find the area of a pizza, this time taking into consideration the area of the crust? Remember, crust typically takes up some area on a pizza. Leave your answers in terms of π and reduced improper fractions.

a) Find the area of the crust of a deep-dish 16 in pizza. A typical deep-dish pizza has 1 in of crust around the toppings.

b) A thin crust pizza has $\frac{1}{2}$ - in of crust around the edge of the pizza. Find the area of a thin crust 16 in pizza.

c) Which piece of pizza has more crust? A twelfth of the deep dish pizza or a fourth of the thin crust pizza?

Area of Sectors and Segments

A sector of a circle is the area bounded by two radii and the arc between the endpoints of the radii.

The area of a sector is a fractional part of the area of the circle, just like arc length is a fractional portion of the circumference. The **Area of a**

sector is
$$A=rac{m\widehat{AB}}{360^{\circ}}\cdot\pi r^2$$
 where r is the radius and \widehat{AB} is the arc

bounding the sector. Another way to write the sector formula is

$$A = \frac{central\ angle}{360^{\circ}} \cdot \pi r^2$$

The last part of a circle that we can find the area of is called a segment, not to be confused with a line segment. A **segment of a circle** is the area of a circle that is bounded by a chord and the arc with the same endpoints as the chord. The **area** of a segment is $A_{segment} = A_{sector} - A_{\triangle ABC}$

Finding the Area in Terms of Pi

Find the area of the blue sector. Leave your answer in terms of π .

In the picture, the central angle that corresponds with the sector is 60 60° would be $\frac{1}{6}$ of 360° , so this sector is $\frac{1}{6}$ of the total area.

area of blue sector =
$$\frac{1}{6} \cdot \pi 8^2 = \frac{32}{3}\pi$$

Information

Please watch the following

examples:First Video:

Examples of finding the

Area of a sector

Practice:

Find the area of each sector. Round your answers to the nearest tenth.

Answers

Additional Practice

Area of Sector Practice

Click on the link and practice 10 problems.

Look at the explanation if you make a
mistake: IXL Area of a Sector